Refine your search:     
Report No.
 - 
Search Results: Records 1-7 displayed on this page of 7
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Precipitation of minerals on rock kept in water with different calcium ion concentrations

Nara, Yoshitaka*; Kuwatani, Ryuta*; Kono, Masanori*; Sato, Toshinori; Kashiwaya, Koki*

Zairyo, 67(7), p.730 - 737, 2018/07

Information of confining ability of rock is important for the geological disposal of radioactive wastes. To maintain or improve the confining ability of rocks, it is important to seal pores and cracks. In this study, we investigated the precipitation of minerals on the rock surface. As rock samples, we used Berea sandstone and Toki granite in this study. It was shown that precipitation occurred on the surface of rock specimens kept in calcium hydroxide solution for 1 month if the concentration was high. Specifically, if the concentration of calcium hydroxide solution was higher than 300 mg/l, the precipitation occurred obviously. After keeping rock specimens in calcium hydroxide solution, the weight of the rock samples increased and the concentration of calcium ion decreased by the precipitation. It is considered that the calcium ion in water was used for the precipitation on rock surfaces. Since the precipitation has been recognized for rock surfaces, it is possible to seal pores and cracks in rocks. Therefore, it is also possible to keep or decrease the permeability of rocks by the precipitation of calcium compounds.

Journal Articles

Micro-impact damage caused by mercury bubble collapse

Futakawa, Masatoshi; Naoe, Takashi*; Kogawa, Hiroyuki; Date, Hidefumi*; Ikeda, Yujiro

JSME International Journal, Series A, 48(4), p.234 - 239, 2005/10

Mercury target will be installed at the material science and life facility in J-PARC, which will promote innovative science. The mercury target will be subjected to the pressure wave caused by proton bombarding in the mercury. The pressure wave propagation induces the cavitation in mercury that imposes localized impact damage on the target vessel. The impact erosion is a critical issue to decide the lifetime of target. An electromagnetic impact testing machine, MIMTM, was developed to reproduce the localized impact erosion damage and evaluate the damage formation. Additionally, droplet impact analyses were carried out to investigate the correlation between isolate pit profile and micro-jet velocity. We confirmed that the value of depth/radius was applicable to estimate micro-jet velocity, and the velocity at 560 W in MIMTM equivalent to 1MW proton beam injection was 300 m/s approximately.

Journal Articles

Micro pit formation by mercury-sphere collision

Ishikura, Shuichi*; Kogawa, Hiroyuki; Futakawa, Masatoshi; Kaminaga, Masanori; Hino, Ryutaro; Saito, Masakatsu*

Nihon Genshiryoku Gakkai Wabun Rombunshi, 3(1), p.59 - 66, 2004/03

The development of a MW-class spallation neutron source facility is being carried out under the Japan Proton Accelerator Research Complex (J-PARC) Project promoted by JAERI and KEK. A mercury target working as the spallation neutron source will be subjected to pressure waves generated by rapid thermal expansion of mercury due to a pulsed proton beam injection. The pressure wave will impose dynamic stress on the vessel and deform the vessel, which would cause cavitation in mercury. To evaluate the effect of mercury micro jets, driven by cavitation bubble collapse, on the micro-pit formation, analyses on mercury sphere collision were carried out: single bubble dynamics and collision behavior on interface between liquid and solid, which take the nonlinearity due to shock wave in mercury and the strain rate dependency of yield stress in solid metal into account. Analytical results give a good explanation to understand relationship between the micro-pit formation and material properties: the pit size could decrease with increasing the yield strength of materials.

Journal Articles

SR-excited process

Teraoka, Yuden

Nano Tekunoroji Daijiten, p.340 - 351, 2003/12

The current status of microprocesses using synchrotron radiation in Japan was reviewed. The SR-excited process is followed by SR-excited surface modification, SR-excited crystal growth and SR-excited etching. The SR-excited surface modification is followed by SR-gas-excited surface modification and SR-direct-excited surface modification. The SR-excited crystal growth is followed by SR-excited atomic layer epitaxy and SR-excited chemical vapor deposition. THe SR-excited etching is followed by SR-direct-excited etching, SR-gas-excited etching and SR ablation.

Journal Articles

Pitting damage formation up to over 10 million cycles; Off-line test by MIMTM

Futakawa, Masatoshi; Naoe, Takashi; Kogawa, Hiroyuki; Tsai, C.-C.*; Ikeda, Yujiro

Journal of Nuclear Science and Technology, 40(11), p.895 - 904, 2003/11

 Times Cited Count:51 Percentile:94.08(Nuclear Science & Technology)

A liquid-mercury target system for the MW-scale target is being developed in the world. The pitting damage induced by pressure wave propagation gets to be one of critical issues to estimate the life of the target structure with mercury and to evaluate its structural integrity. The off-line test on the pitting damage at high cycles over 10 millions was carried out using a novel device, the MIMTM which drives electromagnetically to impose pulse pressure into the mercury. It was found that from the pitting damage data obtained by the MIMTM that the pitting damage can be characterized in two steps, an incubation period that can extend to more than 106 cycles in 316SS and 107 cycles in surface hardening treated one and steady state erosion where mass loss scales with the number of cycles to approximately the 1.27 power for mercury. The length of the incubation period is primarily a function of the material and the intensity of the pressure. This observation provides a simple model for estimating lifetime for different materials and beam power.

Journal Articles

Damage structures and mechanical properties in high-purity Fe-9Cr alloy irradiated by neutrons

Wakai, Eiichi; Hishinuma, Akimichi; Usami, Koji; Kato, Yasushi*; Takaki, Seiichi*; Abiko, Kenji*

Materials Transactions, JIM, 41(9), p.1180 - 1183, 2000/09

no abstracts in English

Oral presentation

Current status of pulsed spallation neutron source at J-PARC

Takada, Hiroshi

no journal, , 

At the Japan Proton Accelerator Research Complex, a pulsed spallation neutron source provides neutrons with high-intensity and narrow pulse width to promote a variety field of materials science by injecting high power proton beam of 3-GeV, 1 MW at repetition rate of 25 Hz. The core components of the spallation neutron source are a mercury target, liquid hydrogen moderators and a reflector with beryllium and iron. Their sizes and arrangement were optimized to get superior neutronics performance for 100% para-hydrogen as the moderator material. Since the lifetime of the mercury target vessel made from SS316L steel is determined by the pitting damage induced by the pressure wave generated at the pulsed proton beam injection, mitigating the pitting damage is the most critical issue to achieve 1 MW operation for long time. So far, gas micro-bubbles injection technique and a target front structure to get faster mercury flow in narrow channel were employed for mitigating the pitting damage in the mercury target vessel. A pitting damage of 25 $$mu$$m was observed on the target front after 670 MWh operation with an average power of 406 kW. In 2018, it is planned to observe the target front of the newly manufactured target after operation with a power of 300 to 500 kW. Further developments of the narrow channel structure of the target front will be carried out. It is also planned to make post irradiation examination to study radiation damage of the target vessel in other facility of Japan Atomic Energy Agency.

7 (Records 1-7 displayed on this page)
  • 1